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Abstract

Objectives: Prolonged survival of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on environmental surfaces and personal
protective equipment may lead to these surfaces transmitting this pathogen to others. We sought to determine the effectiveness of a pulsed-
xenon ultraviolet (PX-UV) disinfection system in reducing the load of SARS-CoV-2 on hard surfaces and N95 respirators.

Methods: Chamber slides and N95 respirator material were directly inoculated with SARS-CoV-2 and were exposed to different durations of
PX-UV.

Results: For hard surfaces, disinfection for 1, 2, and 5 minutes resulted in 3.53 log10, >4.54 log10, and >4.12 log10 reductions in viral load,
respectively. For N95 respirators, disinfection for 5minutes resulted in>4.79 log10 reduction in viral load. PX-UV significantly reduced SARS-
CoV-2 on hard surfaces and N95 respirators.

Conclusion:With the potential to rapidly disinfectant environmental surfaces andN95 respirators, PX-UV devices are a promising technology
to reduce environmental and personal protective equipment bioburden and to enhance both healthcare worker and patient safety by reducing
the risk of exposure to SARS-CoV-2.

(Received 21 May 2020; accepted 29 July 2020)

Individuals with coronavirus disease 2019 (COVID-19), asympto-
matic carriers of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), and viral super-shedders readily contaminate the
environment, whichmay lead to transmission to other patients and
healthcare workers (HCWs).1–4 Shedding can come from both res-
piratory and fecal secretions.5–7 A recent report examining the sur-
vival of SARS-CoV-2 in the healthcare environment found that 13
of 15 (87%) room sites sampled were positive for SARS-CoV-2 by
polymerase chain reaction assay.2 SARS-CoV-2 has been demon-
strated to survive on surfaces, such as plastic and steel, for up to 3
days.8 This extensive spreading and prolonged survival opens the
possibility of indirect transmission of SARS-CoV-2 from surfaces,
which is consistent with data from prior coronavirus outbreaks
such as severe acute respiratory syndrome (SARS) and Middle
Eastern respiratory syndrome (MERS).9–12 Infection clusters of
SARS-CoV-2 have been reported where no direct contact with

an infected individual has occurred but several persons became
infected.13,14

These and other data document that the environment poses a
risk of SARS-CoV-2 transmission. It is difficult to ensure that
manual cleaning and disinfection occur consistently in healthcare
settings,15 and cleaning personnel could be at increased risk of
exposure to SARS-CoV-2 during their performance of manual
cleaning of healthcare facilities. Thus, we sought to determine
the efficacy of ultraviolet C (UV-C)–enhanced environmental
disinfection against SARS-CoV-2.

In addition, due to an acute shortage of N95 respirators and
other personal protective equipment (PPE), healthcare facility
personnel have been using a variety of methods (UV-C, hydrogen
peroxide, heat, radiation) to disinfect and reuse these PPE.16 Given
that such PPE are repeatedly used by HCWs, it is important to
determine whether such disinfection is effective in reducing
SARS-CoV-2 on such PPE, so that HCWs are not exposing them-
selves to this virus with PPE reuse.

Prevention of healthcare-associated infections was a priority
before the COVID-19 pandemic, and it is even more important
now to prevent SARS-CoV-2 transmission to patients and
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HCWs. In addition, enhanced SARS-CoV-2 transmission risks exist
in other settings such as nursing homes, meat processing plants, pris-
ons and jails, schools, restaurants, and other workplaces.

UV-C has promise as a means of environmental control for
SARS-CoV-2. To understand the potential of UV-C as a tool in
the pandemic, we must first understand the effect of UV-C on
SARS-CoV-2 and the necessary operating time to reduce the bio-
burden of SARS-CoV-2 in the environment. Herein, we present the
results of a laboratory study that assessed the efficacy of full-
germicidal-spectrum UV-C from a pulsed-xenon source (PX-UV)
on SARS-CoV-2 on hard surfaces and N95 respirators.

Methods

Cells and virus

Vero E6 cells (VERO C1008, cat. no. NR-596; BEI Resources,
Washington, DC) were grown in Dulbecco’s modified essential
media (DMEM; Gibco, Invitrogen, Grand Island, NY) with 10%
heat-inactivated fetal bovine serum (FBS; Gibco) at 37°C with
5% CO2.

The SARS-CoV-2 working stock was generated from
isolate USA-WA1/2020, obtained from BEI resources (cat.
no. NR-52281; GenBank accession no.: MN985325.1). Virus was
passaged once to generate a master stock using the following meth-
ods. Vero E6 cells were infected at a multiplicity of infection of
~0.001 in DMEM containing 2% FBS in T150 flasks. Viral super-
natant was harvested 3 days after infection when the cells exhibited
3+ cytopathic effects, and the supernatant was clarified by low-
speed centrifugation. This master stock was confirmed to be
SARS-CoV-2 via deep sequencing and was stored at <−65°C in
500 ± 50 μL aliquots containing DMEM with 10% FBS. A working
stock was generated by infecting Vero E6 cells at a multiplicity of
infection of 0.01 in DMEM containing 2% FBS, in T225 flasks.
Viral supernatant was harvested 3 days after infection, clarified
by low-speed centrifugation, and further concentrated by centrifu-
gation at 12,000×g for 3 hours. The supernatant was removed from
the concentrate, and the remaining pelleted material was pooled to
generate the stock used in these experiments. The viral titer was
1.3 × 107 plaque-forming units (PFU)/mL.

PX-UV device testing at Texas Biomedical Research Institute
experimental design

The procedures and processes utilized to execute the experiment
were approved by the Texas Biomedical Research Institute institu-
tional review boards. No human participants were involved in
this study. The experiments to test the antiviral effects of
PX-UV robot model PXUV4D (Xenex Disinfection Services, San
Antonio, TX) on SARS-CoV-2 were performed at the Texas
Biomedical Research Institute. Test surfaces (ie, carriers) included
a hard surface (8-well chamber slides) and a soft surface (N95
respirator, 3M Model 1860). Test surfaces were inoculated with
0.020 mL of virus, deposited in a single drop, and spread with
a pipette tip. Test surfaces were then dried for 55 minutes in a
laminar-flow hood under ambient conditions. Three carriers per
test surface were harvested at time zero to determine the starting
viral titer per carrier type, and they were stored on wet ice while
PX-UV exposure occurred for the remaining carriers. There was a
30-minute difference between controls being harvested and all
exposures being completed. The robot was placed 1m from the test
surfaces. Test surfaces were placed vertically to be parallel with the
lamp and exposed in triplicate to the PX-UV robot for the specified

contact time. Chamber slides were exposed for 1-, 2-, or 5-minute
durations, and the N95 respirator carriers were exposed for 5-
minute durations (Table 1). After the exposure period, virus was
immediately harvested in 150 μL DMEM supplemented with 2%
FBS. Recovered virus was stored on wet ice until processing.
Recovered virus was serially diluted (100 μL was used to prepare
a 1:1 dilution and 50 μL was used to prepare serial
10-fold dilutions). This material was subjected to plaque assay
as described below. Viral titers were determined as PFU/mL in
starting material harvested from the carriers. Data were analyzed
by authors R.C., K.A., and H.S.

Determination of viral titers

Viral titers were determined by plaque assay using a methylcellu-
lose and crystal violet assay.17,18 Vero E6 cells were seeded in
12-well tissue-culture plates in DMEM with 10% heat-inactivated
FBS at a density of 2 × 105 cells per well. Positive control samples
(ie, material from slide and N95 respirator with no UV exposure)
were serially diluted 10-fold, and test samples were diluted 1:1 and
serially 10-fold. Dilutions were prepared in DMEM containing 2%
FBS. Media were removed from the plates and 100 μL of each dilu-
tion was added to the corresponding well in duplicate. A negative
control plate was prepared as well. The plates were incubated for
one hour at 37°C with 5% CO2, with constant rocking. After incu-
bation, media were removed from the wells and a 2-mL primary
overlay consisting of DMEM with 2% heat-inactivated FBS and
30% methylcellulose (Sigma-Aldrich, St Louis, MO) was added.
Plates were then incubated at 37°C with 5% CO2 for 3 days.
After 3 days, the overlay was removed and 10% neutral buffered
formalin (Sigma-Aldrich) was added to each well to fix the cells.
After fixation, formalin was removed and the plates were washed
in 1X phosphate-buffered saline (Gibco). To stain the plates,
~500 μL of crystal violet stain (Ricca Chemical, Arlington, TX)
was added to each well, and plates were incubated at room temper-
ature for 10 minutes. The plates were then washed in fresh water
and allowed to air dry before plaques were counted to determine a
final titer.

Results

The controls for the hard surfaces carriers averaged a titer of
6.20 PFU/mL (log10). In contrast, the PX-UV exposed hard
surfaces had 2.67 PFU/mL (log10) (3.56 log10 reduction,99.97%)
at 1 minute of PX-UV exposure, <1.66 PFU/mL (log10) (>4.54
log10 reduction, 99.997%) at 2 minutes of PX-UV exposure, and
<2.08 PFU/mL (log10) (>4.12 log10 reduction, 99.992%) at
5 minutes of PX-UV exposure (Table 2). The detection threshold

Table 1. Experimental Design

Test
Microorganism

Test
Device

Treatment
Distance Test Surface

Contact
Time Number

SARS-CoV-2 PX-UV
device

1 m Chamber slide 0 min 3

Chamber slide 1 min 3

Chamber slide 2 min 3

Chamber slide 5 min 3

N95 respirator 0 min 3

N95 respirator 5 min 3

Note. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; PX-UV, pulsed-xenon
ultraviolet light.
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of the experimental methods was 1.3 PFU/mL (log10), and that
value was inserted when the levels of SARS-CoV-2 on the carriers
were undetectable.

Next, we evaluated the impact of PX-UV on SARS-CoV-2 ino-
culated onN95 respirators. Control titers averaged at 6.35 PFU/mL
(log10). Inoculated N95 respirators exposed to 5minutes of PX-UV
showed <1.56 PFU/mL (log10), or a >4.79 log10 reduction
(99.998%) (Table 3). The detection threshold of the experimental
methods was 1.3 PFU/mL (log10), and that value was inserted when
the levels of SARS-CoV-2 on the carriers were undetectable.

Discussion

The results from our study demonstrate that the rapid disinfection
times from PX-UV devices can effectively reduce the viable load of
SARS-CoV-2 in a laboratory setting on both chamber slides and
N95 respirators. To our knowledge, this PX-UV device is the first
no-touch disinfection system to show efficacy directly against
SARS-CoV-2 on hard surfaces. UV-C has been the most common
method of PPE disinfection in response to the pandemic, despite
conflicting data regarding its efficacy. Our study is also the first to
demonstrate that PX-UV specifically is effective in reducing SARS-
CoV-2 on N95 respirators. The results of tests demonstrating that
disinfection with PX-UV will not impact the fit or function of the
respirators are available from the respirator manufacturer.19 Under
the current FDA guidance for reuse of N95 respirators, the level of
disinfection that PX-UV devices provide could be used for tier 3
bioburden reduction. Respirators that are disinfected using this
method are suitable only for single users to supplement CDC reuse
recommendations.20

Use of PX-UV is not a novel concept; it has been deployed for
hospital-acquired infection prevention, including multidrug-
resistant organisms such as methicillin-resistant Staphylococcus
aureus and Clostridioides difficile.21–24 The device is most com-
monly used during the terminal cleaning of patient rooms, after
manual disinfection using an EPA-registered disinfectant. With
SARS-CoV-2, there will be additional target areas for disinfection.

Given that emergency departments and SARS-CoV-2 testing
centers are the primary sites for triage and evaluation of suspected
SARS-CoV-2 patients, use of PX-UV should be considered
throughout these areas, including triage, patient rooms, radiology
suites, and patient bathrooms. Considering the potential for secon-
dary transmission, non–patient-care areas (ie, lobbies, waiting
rooms, staff break rooms, cafeterias, and staff on-call rooms)
should be considered for disinfection as well. Portable medical
equipment also should also be considered as possible vectors for
transmitting SARS-CoV-2. Equipment such as mobile work
stations, vital signs machines, wheel chairs, and intravenous
pumps, can become heavily contaminated with routine use.25,26

Disinfection of portable medical equipment with a PX-UV device
resulted in a 94% reduction in bacterial load.27 Our demonstration
that brief cycles of PX-UV disinfection are effective in decreasing
SARS-CoV-2 attests the feasibility of its use in these settings.

Our study has several limitations. We did not evaluate the direct
effect of PX-UVon existing healthcare environmental contamination
but rather high virion concentration in a laboratory setting.Our inoc-
ulum exceeded the level of SARS-CoV-2 contamination that would
be seen in a routine clinical healthcare environment. It is likely that in
such clinical environments, the impact of the PX-UV in reducing
environmental bioburden would be even greater.

The results from our study cannot be generalized to other
UV light sources because UV-C from a PX-UV system is funda-
mentally different from that produced by other UV disinfection
systems that rely on low-pressure mercury vapor lamps or light-
emitting diode sources.28 UV-C from a PX-UV system produces
broad-spectrum wavelength light that covers the entire germicidal
UV spectrum, from 200 to 280 nm,29 potentially creating more
viricidal effect than the wavelengths produced by other narrow-
spectrum sources.30

We found that PX-UV significantly reduces SARS-CoV-2 on
hard surfaces and N95 respirators. With the potential to rapidly
disinfectant environmental surfaces and N95 respirators, PX-UV
devices are a promising technology for the reduction of environ-
mental and PPE bioburden.

Table 2. Impact of Pulsed-Xenon Ultraviolet Light on SARS-CoV-2 Inoculated Onto Hard Surfaces

Test Surface
UV-C Exposure
Time, min

Viral Titer [PFU/mL (Log10)]
per Carrier

Average % Reduction
Log10 Reduction Relative
to Respective Controls1 2 3

Slide 0 6.04 6.28 6.28 6.20 N/A N/A

Slide 1 3 2.45 2.56 2.67 99.97 3.53

Slide 2 2.38 <1.3 <1.3 <1.66 >99.997 >4.54

Slide 5 <1.3 2.15 2.8 <2.08 >99.992 >4.12

Note. UV-C, ultraviolet C light; PFU, plaque-forming units; N/A, not applicable.

Table 3. Impact of Pulsed-Xenon Ultraviolet Light on SARS-CoV-2 Inoculated on N95 Respirators

Test Surface
UV-C Exposure
Time, min

Viral Titer [PFU/mL (Log10)]
per Carrier

Average % Reduction
Log10 Reduction Relative
to Respective Controls1 2 3

N95 Respirator 0 6.84 6.04 6.18 6.35 N/A N/A

N95 Respirator 5 <1.3 <1.3 2.08 <1.56 >99.998 >4.79

Note. UV-C, ultraviolet C light; PFU, plaque-forming units; N/A, not applicable.
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